Chapter 9

Time Lags, Dummy Variables,

and Transformations

This chapter describes three broad classes of refinements
on multiple linear regression: _

1. Lags in the timing of causal relationships among
time-series variables. :

2. Dummy variables to reflect known but usually
unmeasured causal influences that may affect one or more
individual values in time-series data, as well as levels and
slopes.

3. Transformations of variables to allow flexibility in the
functional form of causal relationships.

These three classes of refinement substantially increase our
ability to find and express relationships among data in
complex models. In the” forecaster’s mind, each class of
refinement provides a route for handling a class of
difficulties in building statistical forecasting systems in
situations where linear regression is inadequate.

9.1 Economic Basis for Time Lags

The fundamental idea of a time lag is that the
occurrence of one independent event will cause a second
dependent event to occur after a time period of some
length. This lag is essentially an economic reaction time,
reflecting the response time of human decision makers in
both businesses and households and the delay times
through systems of making decisions to buy, order,
produce, deliver, and pay for goods and services. Time lags
are zero or very short for low-value nondurable goods such
as food. But time lags may be as long as two or three
quarters for intermediate-type durables such as automobiles
and construction tractors, and may be as long as five to ten
years for very large, expensive, highly durable goods, such
as electric generating facilities for public utilities.

9.2 Graphic and Computer
Determination of Single Lags

A simple regression equation designed to explain
variations over time in the mean value of the dependent
variable is given by:

Y.t = by + byXyy; where ¢ is the time index ©.1

This predicting equation assumes that the current value of
Y depends on the current value of X but not on any of the
past values of X. This assumption is very limiting and can
be relaxed by using single or multiple lags described
subsequently.

Determination of a single time lag can be illustrated with
the data on industrial wheel tractors and total construction
contracts. The awarding of a given level of construction
contracts can be readily visualized as the economic event
that causes the purchase by construction contractors of
industrial wheel tractors concurrently or one or more
quarters later.

Ideally, the length of the lag should be determined from
studies of the decision-making patterns of purchasers for
the product in question. In the case of construction
contractors, this would require interviewing an adequate
random sample of U.S. contractors to determine the times
between the awarding of construction contracts and their
purchasing of industrial wheel tractors for use in this
construction. The critical part of this information gathering
would be to determine when an important change in the
trend of construction, such as a downturn after a few
quarters of rising contracts or an upturn after a few
quarters of declining contracts, would result in a
contractor’s changing his rate of purchasing tractors. This
study would be a complex one and has never been done.

In sales forecasting work, lag relationships usually are
determined by the statistical correspondence of sales apd
explanatory variables at the tuming points of business
cycles.

Graphic determination of a single lag can be done by
visually matching the business cycle peaks and troughs of
the two variables. You may do this by placing a chart of the
sales variable over a light box or in front of a window,
placing a chart of the explanatory variable on top, and then
moving the explanatory variable chart to the right or left
until the best overall match of timing is found. This process
is illustrated in Figure 9.1, Panels A, B, C, and D, where
vertical scales have been adjusted to show approximately
the same level and amplitude.
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Figure 9.1

Industrial Wheel Tractor Sales and Construction Contracts,

With Sales Lagged 0 to 4 Quarters
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Figure 9.1, page 2
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The one-quarter lag (of industrial wheel tractor sales
after construction contracts) in Panel B and the two-quarter
lag in Panel C appear visually to be the best, with Panel B
being slightly preferred because of the better fit at the right
side, for the most recent data. Relationships in Panel A and
Panel D are less close.

The statistical determination of the best single lag
consists of calculating the coefficients of simple linear
correlation with lags of zero, one, two, three, and four
quarters, and then choosing that lag with the highest
coefficient of correlation. For industrial wheel tractors and
construction contracts, the correlation coefficients, r,
appear in Table 9.1.

Table 9.1

Lag of Tractor Sales After Construction
Contracts, As Measured by Coefficients
of Correlation, r.

Lag in

Quarters r
0 .80
1 .84
2 .83
3 .77
4 .68

Thus the one-quarter lag is best (has the highest r), but
the two-quarter lag is nearly as good. Notice that a
concurrent relationship (i.e., zero lag) is not a great deal
worse than a one- or two-quarter lag. Most forecasting
practitioners prefer to use any increase in R4 that is
through a lag relationship when the lag is justified by
economic and decision-making theory, and therefore they
would use the one- or two-quarter lag for tractors rather
than no lag.

For alag of one quarter, the equation form is:

Yer=bp tbpXi 9.2)

This form shows the time subscript of X as -1 , meaning
that the value of X; for one quarter earlier in time will be
regressed on Yy. The dependent sales variable is always
expressed in natural time, and the explanatory variables are
expressed in relation to the dependent variable. After some
practice, you will automatically think of Equation 9.2 as
describing a one-quarter lag of Y after X, even though the
“—1” notation is on the X value.

A second example of timing differences in variables
appears in Figure 9.2 with Process Control Company Sales
and US. New Plant and Equipment Expenditures for
Manufacturing, all in seasonally adjusted current dollars.
Note that the peaks in Process Control Sales occur sooner
in 1966 and in 1969 than the peaks in NPEE. Also, in 1971
the upturn in Process Control started sooner than the
uptumn in NPEE. A time lag or lead is called for in the same
way that a lag was needed in Figure 9.1 for tractors and
contracts.
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Figure 9.3 shows the same data with NPEE plotted two
quarters earlier and with much improved correspondence of
the trends and peaks. The scales on these charts have been
plotted to force the means of the two series to correspond,
but no attempt was made to force correspondence of the
cyclical amplitude of the two series.

The timing difference between these two series must be
explained from an economic standpoint. Here the business
cycle turns of Process Control Company sales occur about
two quarters sooner than NPEE; ie., the sales variable is
correlated with a two-quarter lead of the explanatory
variable. This case of sales occurring sooner than the
explanatory variable is the reverse of the usual case, but it
can be readily explained by the following series of actions:

1. Manufacturer decides to order New Plant and
Equipment (Manufacturing), presumably based on a
comparison between the desired stock of NPEE (Mfr.) and
the existing stock.

2. Producer of New Plant and Equipment (Mfr.) receives
the order and places orders in the plant and on outside
suppliers for components.

3. Process Control sells and ships control devices as an
outside supplier of components.

4. Producer of NPEE completes the order, delivers it to
the Manufacturer in No. 1, and payment is recorded as an
expenditure in the NPEE series.

Thus the two-quarter lead of sales relative to NPEE is
simply a difference in the timing of sales of a new
component versus payment for the completed machine in
NPEE. The timing relationship is logical and acceptable.

Such a time lead relationship can be considered a
negative lag and is shown notationally by reversing the sign
of the subscript for the lag. Thus a lag of one quarter is
shown as Xz({(—lt) but a lead of one quarter is shown as
X2 t+1) Thin this notation as saying that data for X,
one quarter ahead in time will be regressed with data for
sales in the current (or natural) quarter. For the Process
Control case, the two-quarter lead results in the following
regression equation:

Yot = 6.21+0.621 Xo(47) 9.3)

9.3 Multiple Lags and Their Evaluation

If in the case of industrial wheel tractors and
construction contracts, a one-quarter lag relationship
yielded the highest coefficient of correlation, and a
two-quarter lag was nearly as high, why not use a
combination of two or more lagged explanatory variables?
This combination is possible and usually leads to a higher
R2. A problem, however, is that the two or more
explanatory variables, which really are the same variable
but with different time lags, are likely to be correlated. This
condition, you may recall, is multicollinearity. If
multicollinearity exists among the independent variables,
then the typical tests of significance of the regression
coefficients, bj, are not precise because of bias in their
standard errors. But let us first calculate the muiltiple lag
and then evaluate this problem.

Where the lags are relatively short, typically a few
quarters, and where only a few lag terms are needed, we can
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use the simple approach, multiple lags. Multiple lags refer to
one explanatory variable that has been entered with several
consecutive lags, 0 to 4 quarters for example, into a
multiple regression equation.

We regress industrial wheel tractors with construction
contracts, Xo¢, with five lags as Xoq, X2(t—l)’ X2(t—2 s
Xo(t—3), and Xp(t_4). Here Xo(t_3) is the “best single
independent variable, as indicated by the simple correlation
coefficients in Section 9.2. The regression equation with
one independent variable is:

Y¢t = by +boXo(t—1) .4
or:
Yo =1.79 + 1.013 Xz(t—l) 9.5
Standard error = .107
T ratio = 9.51

R2=.70

The ¢ ratio is highly significant relative to the critical ¢ of
2.42 of the 1 percent level.

Further insight can be gained by inspecting the
correlation coefficient matrix in Table 9.2 for all possible
combinations of two variables. The correlation coefficients
in the bottom row are the same as those given in the table
in Section 9.2. Let us consider adding a second lagged
independent variable, such as Xo(¢_7), the variable with
the second highest r. The coefficient of correlation of
X2(t—2) with Xoc¢__1) is 0.86. Thus Xo(¢_y does not add
much “new information” after X2ﬁt—1) has been used.
Similarly the coefficient of correlation of Xp{ with
Xo(t—1) is .87, so Xp¢ does not add much further
information either. Intuitively then, we may think of
Xz(t_lz as representing not only itself but also the
adjacent lags, Xo¢ and Xp(t_2)- The partial F test in
stepwise regression yields rigorous measurement of the
foregoing intuitive approach.

Table 9.2 Coefficients of Correlation: r

The best combination of two independent variables is
X(t—1) and Xz(t_3g. (Notice that Xpy, Xp(;—7), and
X2(t—4) are excluded.) Intuitively, we might also consider
X7(t—3) as representing both itself and the longer lag of
X28_4) since their intercorrelation is .83.

ur multiple lag equation is:

Y.t =—-3.48+.709 X2(t—1) + .461 X2(t—3) 9.6)
Std. error 136 .147
T ratio 5.20 3.14

R2 =761

The correlation between the two explanatory variables on
the right is +.71, which is less than our .85 rule of thumb in
Chapter 8. The .71 is large enough to moderately bias the
standard errors but not drastically. Thus we recognize that
the classical assumption of no multicollinearity between
explanatory variables in linear regression has been violated
somewhat, and, therefore, the tests of significance of the
regression coefficients are not entirely accurate. Given
multicollinearity of only .71, however, and the substantial
size of the ¢ ratios, we judge that the two regression
coefficients in Equation 9.6 remain significant.!

Ideally, we might like to search for additional
independent variables, but extensive search has shown that
“construction contracts” is the best conveniently available
variable. Given the resources available in this instance, one
compromise is to accept Equation 9.6 as a useful, though
not ideal, forecasting equation, and to keep in mind two
points: (1) the two independent variables must be forecast
jointly, under the same assumptions about the economy;
and (2) the ¢ statistics cannot be individually considered as
highly accurate in reflecting the significance of each
variable. Notice that in this case the acceptance of Xo(¢_1)
alone as an explanatory variable can be readily
substantiated by a high ¢ ratio, 9.51. Accepting the same

iJ
Variable
Variable | Xop X5 15| Xa(t-2)| X2(t-3)] Z2(t-4)| Yt
X, 1.00
Xy (t-1) .87 | 1.00
Xy (t-2) 73| .86 {1.00 , |
[
Xy (£-3) 631 .7 .85 41.00
Xo(-4) 581 .62 .70 .83 h.oo
Y, .80 | .84 .83 .77 .68 |1.000
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variable again with a different lag does not require as
rigorous a test for significance as if we were testing a
different economic concept for a second explanatory
variable.

We analyzed Equation 9.6 for significant regression
coefficients and stopped with two explanatory variables
because further variables yielded much smaller regression
coefficients. A further important reason for stopping with
two variables is that negative regression coefficients will
frequently appear if many lagged variables are included.
Negative coefficients for lagged variables usually are not
justified by economic causation. Such negative coefficients
usually reflect multicollinearity or a calculating error and
constitute a strong diagnostic signal of nonsignificant
regression.

The reader may ask, “Why not use a fractional lag like
1% quarters?”” The answer is in two parts:

1. Use a fractional lag if data for shorter periods than
quarters are available and if the fractional lag is better than
an integral lag. In the case of industrial wheel tractors and
construction contracts, both original time series are
available by months. Then determine the best single lag in
months and perform all regression with monthly data. A
4-month lag equals a 1 1/3-quarter lag. Monthly data would
allow any single lag in multiples of 1/3 quarter.
Analogously, weekly data would allow any single lag in
multiples of 1/13 quarter. When using explanatory variables
from the national income accounts, however, only
quarterly data are available. A possibility here is to group
monthly sales data into whatever quarterly arrangement
yields a good single integral lag with the available quarterly
explanatory variable. Data grouping then yields a fractional
lag.

2. Recognize that regression coefficients of lagged
explanatory variables act as weights and that with adjacent
lags, such as X;_ 7 and X;_3, equal regression coefficients
yield approximately the same result as a 2%-quarter lag.
When only quarterly data are available, working with
regression coefficients as weights is the only alternative.
The economic interpretation of equal regression
coefficients (weights) for X;_o and X;_ 3 is that half of the
purchasers buy 2 quarters after the explanatory variable
occurs and half of the purchasers buy after 3 quarters.
Unequal weights yield other interpretations, and these
conceivably could be verified, or predetermined, by surveys
of purchasers.

A second example of finding a single-integral time lag
appears in Section 9.5 in the Process Control case study.

9.4 Distributed Lags:
Geometric, “V,” Almon, and Others

A more general functional form for Equation 9.2 is the
following form which allows the current and many lagged
values of X; to affect Yy:

Yot =bp +boXpi + b3X2(t_1) + b4X2(t_2) +... (9.7
* by X2(t—m)
This regression equation illustrates a distributed lag model

because the influence of the explanatory variable on Y is
distributed over a number of lagged values of Xy.2

Distributed lags consist of regression equations of the
form of Equation 9.7, with the additional condition that
the theoretical distribution of the bj regression coefficients
follow a predetermined form or shape. One common shape
is that of the geometric distribution, where each b; value
declines by a given percentage at each additional lag.
Another common form, the inverted V, requires that the by
coefficients increase up to a point and decrease thereafter.

Distributed lag models, where the shape of the b;
coefficients is specified, are necessary for long lag
distributions, such as for electric power generating plants
that may require as many as forty quarterly lags or ten
years. In a distributed lag model, only the parameters of the
assumed lag distribution need be counted as degrees of
freedom lost, whereas with individually fitted regression
coefficients, each lag ‘““costs” one degree of freedom. Five
types of theoretical lag distributions are illustrated in
Figure 9.4—the Jorgenson, Almon, Deleeuw (inverted V),
Grilliches-Wallace, and Evans (double inverted B).

Calculating distributed lags requires computer programs
with sophistication beyond least-squares linear regression
routines and is beyond the scope of this discussion. See
M.K. Evans, Macroeconomic Activity: Theory, Forecasting,
and Control, which is particularly useful in describing
applications of distributed lags (see Bibliography at the end
of this chapter).

9.5 Dummy Variables and Time Trends

A dummy variable is an abstract number or set of
numbers used as an explanatory variable in a multiple
regression predicting equation. The ‘‘abstract”
characteristic differentiates a dummy variable from a “real”
variable, which is based on measurements of actual activity,
such as construction contracts.

Table 9.3 lists the common types and forms of dummy
variables. See Draper and Smith, Applied Regression
Analysis, for an excellent discussion of methods of using
dummy variables.

9.5.1 Single-Period Dummy Variable

The single-period dummy variable is used to represent an
unusual economic circumstance, as when a company’s sales
are unusual due primarily to an employee strike, and when
all of the effect is confined to one period. An example
appears in Figure 9.5 showing quarterly seasonally adjusted
sales of Delta Air Lines, Inc. Delta sales reflect largely
domestic passenger and cargo operations. The sharp
increase in the third quarter of 1966 was due to an
employee strike on five other airlines which forced
additional air traffic to Delta.

The most convenient form of dummy variable for a
one-period effect uses “unity” in the period affected and
“zero” for all other periods. The least-squares regression
method will assign to the dummy variable all of the residual
error after taking into account the normal influence of
other explanatory variables in the equation. The “unit”
form of dummy variable is convenient because its regression
coefficient yields a handy quantitative measure of the
influence of the unusual economic circumstance, here the
strike.
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Figure 9.4
Types of Theoretical Lag Distributions
Net Investment-Time Response to an Increase in Sales
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Source: Michael K. Evans, Macroeconomic Activity: Theory, Forecasting,
and Control (New York, Harper & Row, 1969), p. 104.

Table 9.3 Dummy Explanatory Variables

Type Example of Form

a. Single period 1 in period; 0 elsewhere

b. Multiple period +.5 in period preceeding unusual event such as a strike
"neutral" ~1.0 in period of event

+.5 in period succeeding event
0 elsewhere

c. Change in level 0,0,0,0,1,1,1,1
d. Time trend 1,2,3,4,5,
e. Change in slope of 0,0,0,0,1,2,3,4,5 or -5,-4,-3,-2,-1,0,0,0,0

linear time trend
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Figure 9.5

Delta Air Lines, Inc., Sales: Seasonally Adjusted

Sales:
Million Dollars
300
200
Strike on 5 other airlines
100
O

Ideally, the forecaster should derive a direct measure of
the influence of the unusual economic circumstance and
use this measure as an explanatory variable. For a strike,
this measure might be estimated as the number of
employees involved times the number of days on strike
times the net sales effect per day per employee. But such
data are usually difficult or impossible to obtain because of
the many unusual conditions present in a strike situation.

In practice, therefore, if an unusugl economic
circumstance can be clearly identified as a causal influence,
then professional forecasters use a dummy variable. If the
strike lasted only one quarter when forty quarters were
being studied, the use of one degree of freedom is little
detriment. In the Delta case, the regression coefficient of
the dummy variable was positive and highly significant,
with a ¢ statistic of 4.37.

The fundamental advantage in using a dummy variable is
that it allows other explanatory variables to receive
regression coefficients that reflect their normal relationship
to sales in all periods other than the period in which the
dummy variable applies. Therefore, the other explanatory
variables will “fit better.” Using a dummy variable for a
legitimate unusual circumstance is always preferable to
omitting the unusual period because a gap in time-series
regression may lead to error.

The single-period dummy variable assumes that all of the

effect is in one time period and that this effect, either
positive or negative, is not anticipated in advance or
recovered in subsequent periods. This concentration of all
effects in one quarter tends to be true in service industries
but is less true in durable goods industries. '

9.5.2 Multiple-Period Dummy Variable

Many unusual economic circumstances are not confined
to one quarter and, therefore, a multiple-period dummy
variable may be necessary. A special case is the
multiple-period-neutral dummy variable which assumes, for
example, that sales are not lost to competition during a
strike and can be made up equally before the strike and
after the strike. This was partly true in the U.S. steel
industry strike 25 years ago. The first “+.5” part of the
dummy variable in Line C of Table 9.3 represents an
addition to sales caused by customers stockpiling steel
before the date of an expected strike; the “—1.0”
represents sales lost during the quarter of the strike; and the
second “+.5” represents catch-up sales after the steel strike.
The dummy variable numbers were arbitrary assumptions
here. To the extent possible, dummy variable numbers
should be based on measured estimates of effects, usually
from previous similar occurrences.

Other types of multiple-period dummy variables than
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the special “neutral” one discussed previously are possible.
We give no illustrations here, and we caution that as
dummy variables are lengthened in an unstructured manner,
additional degrees of freedom are used up and economic
causation may be more difficult to establish.

9.5.3 Change-in-Level Dummy Variable

/ The change-in-level dummy variable is appropriate when
a major change is expected to represent a continuing
condition, such as when Delta Air Lines, Inc. acquired the
routes formerly operated by Northeast Airlines. In this case
a dummy variable of Type C from Table 9.3 was added to
the forecasting model, effective in the third quarter of
1972. Note the sharp increase in sales in Figure 9.5. The
dummy variable allows a statistical measure of the net
change in level of sales after the merger but allows for the
normal effect of the other causal variables. The regression
coefficient for this dummy variable was also positive and
highly significant for Delta, with a ¢ statistic of 9.55.

9.5.4 Time-Trend Dummy Variable

The time-trend type of dummy variable is a convenient
way of determining a linear time trend in a multiple
regression program. Any set of numbers with a constant
change from one period to another would satisfy the
requirement mathematically. But the form in Table 9.3
with a unit increase per period is convenient in that the
regression coefficient times this time trend has an easily
determined meaning, namely, the average increase per
period in the dependent variable that is not attributable to
other independent variables.

9.5.5 Change-In-Slope Dummy Variable

The change-in-slope-of-linear-relation form of dummy
variable is handy when a new rate of change over time is
obviously necessary because of a changed set of economic
influences. This type of dummy variable is used in
connection with a time trend to fit the two linear trends in
the Safeway annual data in Section 3.4, Figure 3.1.

9.6 Transformations of Variables
.

A transformation of a variable in regression analysis is a
change in the algebraic method of expressing the variable,
such as transforming X, to log Xy. Transformations may be
made on the sales variable, or on one or more explanatory
variables, or on both. The purpose of a transformation is to
express the variable in a way that more accurately describes
the underlying theoretical causal relationship, or that better
fits the observed data relationships, or both.

Ideally, transformations should be made at the start of a
regression study to accurately express known causal
relationships or known empirical relationships among data.
But many transformations are made after a regression study
has started because preliminary regression results are not
adequate, or do not conform to the assumptions necessary
for significance testing, or both. We have called the analysis
of observed regression relationships “diagnosis” in the sense
of determining what is wrong at a given stage of analysis,
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regardless of why, and determining the most logical next
steps to take to make and test improvements.

This section will describe the following four classes of
transformations:

1. Algebraic transformations which change the original
absolute form of a variable to a different algebraic form,
such as transforming Xy to log X or to X22.

2. Economic transformations which alter the economic
concept of a variable, such as transforming a current-dollar
variable to a constant-dollar variable.

3. First-difference transformations, which express
variables as changes from previous values rather than as
absolute values.

4. Nonlinear transformations, which are extensions of
the foregoing algebraic transformations. Nonlinear
transformations are needed to express certain functions,
but nonlinear transformations require different and more
complex solution methods than the first three classes.

When considering transformations, the economic or
business causation underlying the selection of explanatory
variables has presumably already been established, meaning
that the researcher has accepted that variable X; has a
causal relation to Y. The objective in studying
transformations, then, is generally, not to find new
economic concepts to be represented by the explanatory
variables, but rather to find that form of an equation
connecting sales and the one or more explanatory variables
that will most closely represent the relationship. “Most
closely” means that relationship having the smallest
standard error of the sales variable or largest R2, subject to
the usual concemns of wanting nonautocorrelated residuals,
homoscedasticity in the residuals, and so on. The search for
a better form of the regression equation through
transformations, however, may affect the final choice of
explanatory. variables to be included in a regression
equation.

The effect of a transformation may be small or very
extensive. For example, changing from the absolute form of
the explanatory variable X5 to the log of X5 will only
change the shape of the regression function from a straight
line to a curve. However, shifting from the absolute form to
a first difference equation causes a major change in the
measurement concept and in the interpretation of the final
equation, and it also may affect substantially the choice of
explanatory variable.

To summarize this introduction to transformations, we
repeat that the purpose of making transformations is to
improve the regression relation for any of several reasons.
The type of transformation to make will be illustrated in
subsequent descriptions. Some of the indications of need
for a transformation were given in Section 8.1 under the
assumptions for regression and in Section 8.2 under the
““Plot of Residuals” where testing for linearity and
homoscedasticity were described. Further indications of the
need for transformations will be given.

9.6.1 Algebraic Transformations’
Algebraic transformations change the mathematical form

of the regression predicting equation. Table 9.4 shows three
types of algebraic transformations and examples of each.




Table 9. 4 Algebraic

Transformations

Type Equation form
Logarithmic YC = b] + b2 logX or (9.8 )
logYC = b] + b2X or (9.9 )
'IogYC = b] + bzlogX (9.10)
Polynomial YC = b] + b2X2 or (9.11)
1
Yc = b1 + bZX2 or (9.12)
— 2
YC = b.l + b2X + b3X (9.13)
Reciprocal XC = b] + EZ. or (9.14)
X
b
Joen el
X (9.15)

We call these ““algebraic transformations” because the need
for them usually arises from mathematical reasons rather
than from economic causation reasons. We recognize,
however, that any transformation causes a mathematical
change in the regression equation, regardless of the reason.

A logarithmic transformation of a variable consists of
substituting the logarithm of a variable for the variable.
This has the effect of substituting a measure of relative
change of the variable for the absolute change. For
example, in Table 9.4, the first type of logarithmic
transformation, in Equation 9.8, shows the substitution of
log X for X. Then any change in the sales prediction, Y.,
depends on a relative change in X rather than on an
absolute change in X. Thus logarithmic transformations
frequently fit population variables well. .

The graphic effect of a logarithmic transformation is to
condense the scale for large values of the transformed
variable. Therefore, the logarithmic transformation is often
helpful when the plot of residuals, or (Y — Y,), shows
increasing dispersion with increasing values of the
explanatory variable.

This can also be seen directly in a scatter diagram when
the dispersion of Y values around the Y, line increases for
increasing size of the explanatory variable. The increasing
size of the explanatory variable frequently reflects general
economic growth over time, with the most recent
observations at the upper right hand side of the
scattergram. The increasing pattern of residuals may reflect
a percentage variation rather than absolute variation, and
the lc¥arithmic transformation may significantly improve
the R-.

The logarithmic transformation provides one kind of

nonlinear regression function, in the sense that the line of
regression is curved for two-variable regression. The
logarithmic transformation causes little difficulty in
calculation, however, because most least-squares multiple
regression computer programs accept the transformed
numbers instead of the original numbers. The regression
calculations will be valid so long as the transformations are
within the class known as “intrinsically linear,” which will
be described as the last type in this section.

The polynomial transformations illustrated in Table 94,
Equations 9.10, 9.11, and 9.12, are most likely to be useful
where the pattern of dispersion in the residuals indicates a
systematic deviation from uniform scatter. For example, if
the scale of the X variable needs to be expanded for large
values of X in order to secure a more uniform dispersion of
residuals, then transforming X to X2 may help, as in
Equation 9.11. If the X variable needs to be contracted, try
transforming X to X%, as in Equation 9.12. If the residuals
tend to be high at the left and right sides of the residual
chart and low at the center, or vice versa, then polynomial
transformation like Equation 9.13 is likely to be helpful.

The reciprocal transformation consists of substituting
1/X for X, as an example. The result is that when X
increases (after being transformed to 1/X), then the
predicted value of Y decreases, but by decreasing relative
amounts as X increases. The effect is, therefore, not the
same as changing the sign of the regression coefficient. The
reciprocal transformation of X is particularly helpful where
the direction of influence on Y, is to be reversed and where
the scale of X is to be contracted for large values of X, all in
the special nonlinear way characteristic of reciprocals.?

If several algebraic transformations yield homogeneity,
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then use considerations of economic theory to choose the
preferred transformation. If several transformations are
similar in effect, then the logarithmic transformation
(reflecting approximately constant variations in the
percentage residuals) is the most straightforward
transformation to explain to other people because of its
similarity to percentage growth rates and compound
interest.

9.6.2 Economic Transformations

We have called the following transformations
*““economic” transformations because the stimulus for their
use comes primarily from economic considerations. Many
of the transformations use simple algebra. Table 9.5 lists
the types and the equation forms or examples.

The constant dollar transformation converts a current
dollar time series to a constant dollar time series. In general,
a dependent sales variable in physical units or constant
dollars must always be correlated with explanatory

Table 9.5
Economic Transformations

variables in physical units and/or constant dollars. The
dependent sales variable in current dollars may, in simple
cases, be correctly regressed against explanatory variables in
current dollars, and this has been done in several cases in
this book. Use of current dollar sales and explanatory
variables may be justified when dollar sales of products or
services are considered a function of current dollar income
or when both the sales and the explanatory variables are
subject to approximately the same rates of price change or
inflation.

Many regression equations show a constant dollar
dependent variable as a function of a constant dollar
explanatory variable and of a price ratio. The objective here
is to have the price ratio be independent of the other
variables, and this requires avoiding double counting of
price in the ratio and in the other variable. Using constant
dollars avoids the double counting of price. Econometric
work largely uses constant dollar and physical unit
variables, along with price deflator series, price ratios, and
price differences. The price deflators are used to convert

Type

Equation form or example

Constant dollar

Current dollar time series

Ratio to another variable

Price deflator

Product price

Competitive product price

Aggregate income

= Per capita income

Population
Aggregate income/price index _ ggi]capita
Population income

Ratio to trend

Time series

Trend of time series

Change in Tevel of aggregation

-

—Change from Total Construction Contracts|

Residential Construction Contracts

Change from Personal Disposable Income

Personal Income

to

(example of disaggregation) |

to ‘

(example of aggregation, accomplished
by adding elements of personal taxes
and personal savings.)
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current dollars to constant dollars for comparison with
other constant data series. The price deflators themselves
. are often determined by simultaneous equation solutions
within the econometric model.

The constant dollar transformations were illustrated in
Section 9.2 for industrial wheel tractors and construction
contracts, where current dollar construction contracts were
divided by a construction price deflator to arrive at a
constant dollar value of construction contracts, for use with
industrial wheel tractor sales in physical units.

To summarize, the main reason for transforming current
dollar data to constant dollars is to provide comparability
where different rates of price inflation apply to the original
variables. This frequently happens. A related reason is that
many economic theories are expressed in constant dollar or
“real” terms to reflect purchasing power influences.

The ratio-to-another varigble transformation, as shown
in Table 9.5, is necessary wherever the ratio of two
variables has a special meaning, separate from or in addition
to their meaning in absolute form. The ratio of two prices
are frequently used as an explanatory variable in demand
functions. Another common use of ratios is to convert
aggregate income into per capita income.

A further use of the ratio-to-another-variable
transformation will be illustrated in Chapter 14 on
preparing company and industry forecasts. There we use a

Figure 9.6

ratio of company sales to industry sales. The resulting ratio,
called “C%Il,” is a market share variable with a very special
meaning.

The ratio-to-trend transformation is highly useful where
the sales and explanatory variables both have substantial
business cycle fluctuations but where the amplitude of
cyclical fluctuations may be different. In this case,
expressing both variables as ratios to their own time trend
provides a way of calculating the relative amplitude of
fluctuations around trend. Then the least-squares regression
calculations can adjust for these varying amplitudes.

Figure 9.6 shows the scattergram for the data of Figure
9.3. Note that a linear regression line would fit reasonably
well at the lower left of the bivariate observations and at
the upper right for the two observations near the rizht
margin. But within the observations centering around the
vertical ordinate for NPEE (mfr) of $30 billion, the
observations had a wide scatter. The plot with points
connected in time shown in Figure 7.4 shows that the
movements through time around the $30 billion ordinate
are nearly vertical, rather than near the sloping least-squares
regression line. This indicates that the present regression
model is not fitting well during the sharp up and down
movements of these two cyclical series. From an analytic
standpoint, we have the wrong explanatory variable, the
wrong functional form, or parts of both.

Scatter Diagram: Process Control and NPEE (T+2)

NEW R
ORDERS:
MIL.
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30 ., .
25 . .
. / ) . '
20
15 | !
30 35

Equip. Expend., Bil. Dol. Annual Rate (T+2)
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A review of economic causation confirms that business
expenditures for new plant and equipment clearly
encompass the market for Process Control products, that a
measure as broad as NPEE (Mfr) is the correct independent
variable, and that it is at about the correct level of
aggregation.

Figure 9.7 shows the actual and predicted values from
linear simple regressions for the sample (or historical)
period. Note that the cyclical peaks of the predicted line in
1966 and 1969 almost correspond to the cyclical peaks of
the actual and that the cyclical trough of the predicted line
in 1970 corresponds to the trough in the actual line. Both
series rise together in 1972. This suggests that concarrent
timing of peaks and troughs is not the problem. The
problem obviously is that predicted sales have less vertical
amplitude of variation than the actual sales.

A related critical problem is that no business cycles
appear during 1962 to 1965. Hence, any function that fits
well into 1962 through 1975 may not fit well in 1966
through 1972, and conversely any function that fits well
cyclically in 1966-1972 may not fit well in 1962-1965.
Thus a choice has to be made, and clearly the old data for
1962-1965 are less relevant for forecasting than the recent
data for 1966-1972. Therefore, the first three years are
dropped to allow the use of a function that magnifies the
amplitude of the business cycle fluctuation of NPEE
(Mfr);49 in 1966-1972.

Tigure 9.7

A ratio-to-trend transformation, together with omission
of the 1962-1965 data, allows for a magnification of the
NPEE cyclical amplitude of variation. The resulting
predicting equation is:

NPEE (Mfr)p4,

Predicted sales _ by + by (9.16)
Sales trend NPEE TREND

or

Y, =0.9374 + 1.9372X7(1+2) 9.17)

Figure 9.8 shows the predicted values graphically. Note
that the amplitude of the business cycle’s variations of
NPEE is now much greater and roughly matches that of the
actual. The R2 = .81, which is appreciably higher than R2 =
.54 of the absolute values in the 1962-1972 data. This isa
much more useful equation for forecasting because the
predicted values fit much better since 1966. Tests of
forecast Equation 9.17 and comparisons of actual with
forecast are given in Chapter 15.

The last type of economic transformation listed in Table
9.5, the change-in-level-of-aggregation transformation,
either subdivides a time-series variable into two or more
economic components or adds two or more time-series
variables to derive a new variable. This transformation

Process Control and NPEEp4j: Actual Versus Predicted Sales

for 1962=-72

SALES:
MILLION

40
DOLLARS

30}
201
Predicted:
'''' Y, = 6.21 + 0.621 (NPEE — MFR) .,
R = .73
10}
D'W 0502
] 1 i 1 i 1 L | I L . i
1962 1964 1966 1968 1970 1972
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Fiqure 9.8

PROCESS CONTROL AND NPEET+2 WITH RATIO-TO-TREND TRANSFORMATIONS

ACTUAL VS PREDICTED FOR 1965-72
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involves a change in numbers, but the change yields both a
strictly mathematical effect and a change-in-economic-
concept effect. The change-in-level-of-aggregation trans-
formation will be illustrated next in a test of whether the
appropriate level of aggregation has been used when the
correct general economic concept is known.

To illustrate with the Process Control Company case,
suppose the forecaster first started to correlate Process
Control Sales with Total New Plant and Equipment
Expenditures. To see the alternatives, all categories of
NPEE published in the Survey of Current Business appear
in Table 9.6. The forecaster for Process Control might
determine from the marketing department that, although
the majority of Process Control products go to producers of
machinery for manufacturing industries, a small percentage
of products also go to producers of machinery for
nonmanufacturing industries, e.g., utilities. Thus a
forecaster might have started by regressing Process Control
sales with Total New Plant and Equipment Expenditures at
the level of $88.44 billion in 1972.

If the statistical results are poor, then the forecaster
might restudy the market to which Process Control goods
are shipped and may concentrate on manufacturing
industries, which represent about 90 percent of the end
uses of Process Control products.

This process of moving from a time series measuring

1968

1970 1972

total activity in a particular sector of the economy to one
or more subdivisions of that particular sector is called
disaggregation. Early work with Process Control went
through this process, which led to the conclusion that
“manufacturing” was the best level of disaggregation. A
further possible disaggregation, if justified by new data on
end uses of Process Control products, might be to subdivide
the manufacturing NPEE series into durable goods
industries and nondurable goods industries.

When we disaggregate by subdividing a time series into
two or more components, we are nevertheless shifting to a
different economic concept. Disaggregating (or its reverse,
aggregating), therefore, is not purely algebraic. An
explanatory variable at a different level of disaggregation
may have business cycle peaks at different times, may have
different amplitudes of fluctuation over the cycle, and may
have other differences.

How can we tell if disaggregation will help? Suppose we
consider moving down one level of aggregation from
manufacturing to two subdivisions: durable goods
manufacturing and nondurable goods manufacturing. If
durable goods manufacturing constituted a precisely
uniform percent of total manufacturing, and thus
represented “total manufacturing” multipled by a constant
less than unity, then the result of this disaggregation would
not help build an improved regression equation. On the
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Table 9.6

New Plant and Equipment Expenditures, United States, 1972

Industry 1972 Expenditures

Billion Dollars

Durable goods manufacturing 15.64
Nondurable goods industries 15.72
Manufacturing total 31.35
Mining 2.42
Railroad 1.80
Air transportation 2.46
Other transportation 1.46
Public utilities 17.00
Communication 11.89
Commercial and other 20.07
Nonmanufacturing total 57.09
Total -

88.44

Source: Survey of Current Business, U.S. Department of Commerce,
Vol. 54, No. 2, Feb. 1974, p. S-2.
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other hand, if durable goods manufacturing represents a
varying percentage of total manufacturing, then
disaggregating to durable goods manufacturing represents
moving to a different concept and may improve the
regression.

Conversely, the process of aggregation, such as moving
from just manufacturing NPEE to total NPEE, is also not a
simple algebraic transformation -because, in general,
manufacturing NPEE would not represent a uniform
proportion of total NPEE.

The choice among different levels of aggregation must be
based primarily on economic causation, that is, on
matching the sector of economic activity of the
explanatory variable as closely as possible to the end uses of
the products or services in the sales variable.

Disaggregation applies as well to the dependent sales
variable as to an explanatory variable. For example, if
Process Control products could be subdivided by end uses
in manufacturing industries versus nonmanufacturing
industries, then conceivably the forecast operation could be
divided into one regression equation for manufacturing and
another for nonmanufacturing. Then the total Process
Control sales forecast is the sum of the two sales categories.
If such subdivision can be made, improved regression
equations usually may be found.

Other examples of disaggregating an explanatory variable
include:

1. Disaggregating personal disposable income into
personal consumption expenditures and personal savings.
These series have important differences in economic
concept.

2. Disaggregating the labor force into employed persons
plus unemployed persons. Again, these two subdivisions
behave quite differently, with the unemployed sector
showing far greater sensitivity to business cycle changes.

Disaggregating an explanatory variable economic time series
into subcomponents as illustrated previously frequently
improves the regression (increases the R2, and so on) for
these reasons:

1. Two explanatory variables provide a further degree of
statistical flexibility in fitting a regression equation than
one explanatory variable. A higher R2 will usually occur
but not if good economic reasoning has been violated.

2. The disaggregated explanatory variable series may
match the general economic concept of the sales variable
more closely than the aggregate. If a forecaster can
determine the correct level of aggregation by economically
based reasoning at the start of the project, he should do so.
But sometimes this determination is not made in order to
get a “quick look at the data,” or in less obvious cases may
require substantial information on end uses of sales which
may not be available at the start of a project.

3. The company characteristics of the products or
services and of the marketing organization may result in a
much better regression equation when using two or more
disaggregated explanatory variables with company sales
than when using a single aggregate variable. This is an
extension of the more precise “economic concept” from
paragraph 2, but it emphasizes company characteristics
rather than general economic class characteristics of the
sales variable.

9.6.3 First Difference Transformations

The first difference transformation is highly useful when
the explanatory variable is a slowly changing aggregate,
such as U.S. personal income. The first difference
transformation amplifies the influence of changes in the
aggregate from one period to another by making the entire
equation depend on changes, called first differences, rather
than on the absolute value of the aggregate. The algebraic
symbol for the first difference is A, the Greek letter
‘“delta.” But expressing a variable as a first difference
fundamentally changes the nature of the regression
equation and also fundamentally changes the meaning of
the diagnostic measures, such as the standard error of
regression, the R2, and the Durbin-Watson test for
autocorrelation.

Let us begin by considering the standard linear
regression equation for absolute values of Y and X:

Yot =bp +boX¢ 9.18)

Here we will consider ¢ as the first forecast period. When we
transform X to AX, then Equation 9.18 must be
transformed to

Equation 9.19 can also be expressed in the residual form as
follows, and we will use the latter for explaining the first
difference transformation:

Yi=by +by(AXy) +b3Y;_ 1 +e (9.20)

This equation has a “lagged dependent variable,” Y;_1, in
the position of an explanatory variable because it is on the
right-hand side of the equation. From the standpoint of
time, “t,” the value of *“Y;_{” is a predetermined or
already known variable and, therefore, may be legitimately
included on the right-hand side with the other independent
explanatory variable. Notice now that the difference
between Y on the left-hand and Y;_; on the right-hand
side in Equation 9.20 is accounted for by three additive
terms:

1. The constant term, b1, reflecting the average additive
growth increment in Y, per period exclusive of the effect of
all other additive terms in the equation.

2. The product of the regression coefficient, by, times
the first difference of the explanatory variable, AX;.

3. The product of the b3 regression coefficient times the
lagged dependent sales variable. The b3 should be thought
of as a term from compound interest formulas, that is, bz =
(1+1), where r is the multiplicative growth rate per period in
Y, exclusive of the effect of by and byAX;. The e; term
will have no average effect on Yy or Y ; because E(e;) = 0.
The existence of Equation 9.20 implies another underlying
equation:

AY;=b] +byAX; + € ‘ (9.21)

You might start by searching for explanatory variables that
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are expressed in first difference form and then calculating
the correlations among the AY and AX;| values. You would
usually choose that AX; series yielding the highest
correlation. The important point here is that searching in
this way would lead to the same result as searching for
explanatory variables in Equation 9.19, and searching
through trials of Equation 9.19 is usually more convenient
for purposes of analyzing results.

Equations of the form of 9.19 and 9.20 are called
recursive equations, meaning that these equations forecast
only one period at a time for successive periods. To prepare
a forecast for Yc(t+4)’ for example, requires first preparing
a forecast Y using the predetermined lagged dependent
variable, Y¢_, plus by and bpAX;. Then forecast Y41
using by + b2AX(t+1») + b3Y.i, then successively an
finally, Y, t+4)- By contrast, the forecast for Y, t+4) in
Equation 9.18 could be calculated directly, given a forecast
of the explanatory variable Xi+4. This characteristic of
recursive equations is normally not a problem in applying
multiple regression analysis because computer programs to
handle recursive equations are widely available and because
forecasts of explanatory variables for all periods in a
forecast span are normally prepared and serve as data inputs
to generate forecasts.

The major difficulty in recursive equations arises because
the standard error of regression and the R2 must be
interpreted differently than for an equation with all
absolute values of variables, like Equation 9.18. The
standard error of regression in the usual equation with
absolute variables measures the average error of predicted
sales from actual sales for gl historical periods, but, by
contrast, the standard error of regression for a recursive
equation measures only the average error from a previous
actual value, Y;__1, to the next predicted value, Y. Thus
the recursive standard error is an average error for all spans
of one period each.

If the recursive standard error is used for a forecast five
periods ahead, then whatever confidence coefficient is
calculated for a one-period forecast confidence interval
would have to be expressed as a power of the number of
periods for a multi-period forecast. Thus, if a 0.95
confidence coefficient applies to a specific confidence
interval, then for a five-period recursive forecast the
applicable confidence coefficient is approximately (0.95)5
= (0.77). We say “approximately” because other elements
of forecast error also apply, as outlined in Chapter 15.

Similarly, the R2 in a recursive equation measures the
ratio of explained to total variance where the total variance
reflects errors in historical predictions only from period to
period. By contrast, the R2 for absolute data as in Equation
9.18 measures the ratio of explained to total variance where
total variance measures the average errors in all historical
predictions.

The meaning and significance testing of the
Durbin-Watson test for autocorrelation of the residuals also
changes in a recursive equation. The Durbin-Watson test
was designed to measure autocorrelation in residuals from
absolute regression equations like Equation 9.18. If the
Durbin-Watson ““d” is calculated for recursive predictions, it
will still measure autocorrelation of residuals, but narrower
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confidence limits must be used for the significance test. The
reason is that since recursive equations measure changes
from one period to a successive period only, then measures
of dispersion are smaller.

9.6.4 Nonlinear Transformations

The need occasionally arises for algebraic
transformations that expand or contract the variations of a
variable in particular ranges of that variable or for complex
functional forms of the regression equation indicated by
definite information about the form of the relationship.
These needs may call for algebraic transformations beyond
those discussed earlier and particularly for a class of
transformations called intrinsically nonlinear
transformations.

The transformations listed in Section 9.6.1 are all linear
in the parameters and are of the type

Y=B; +ByZy+B3Z3+... +ByXp+te (9.21)

where the Z; can represent any function such as X2, 1/X,
and so on, of the basic explanatory variables X5, X3,.. .,
X
quuation 9.21 is linear in the parameters. Draper and
Smith call the form of Equation 9.21 intrinsically linear.*
This intrinsically linear characteristic is important because,
if present, most multiple regression computer programs will
readily carry out the complex regression computation.

The estimation of the parameters in an intrinsically
nonlinear regression function is not a straightforward
calculation as it is with intrinsically linear functions.
Solving intrinsically nonlinear regression problems usually
requires an iterative technique and special computer
programs.

Footnotes

1. Robert A. Berman, ‘“An Econometrician’s Reaction to a
Non-econometrician’s Guide to Econometrics,” Business
Economics, Vol. IX, No. 1, January 1974, p. 81, where he states,
“Multicollinearity may understate the errors of the regression
coefficients, but its presence will not ‘produce spurious forecasts.’
Multicollinearity becomes a problem only in identifying particular
coefficients in an equation for the purpose of testing certain
hypotheses about them. It is not a problem when one wishes simply
to forecast.”

2. Jan Kmenta, Elements of Econometrics (New York, The
Macmillan Company, 1971), p. 473.

8. Draper, Klingman, and Weber, Mathematical Analysis: Business
and Economic Applications (New York, Harper and Row, 1972),
provides a helpful section on p. 94, entitled “Applications of
Nonlinear Curves in Business and Economics.”

4, Draper and Smith, Applied Regression Analysis (New York, John
Wiley and Sons, Inc., 1966), pp. 263-264 and 267.



Bibliography

Dhrymes, Phoebus J. Distributed Lags: Problems.of Estimation and
Formulation. San Francisco: Holden-Day, Inc., 1971. An
excellent advanced text, ch. 9.

Draper, N.R. and H. Smith. Applied Regression Analysis. New
York: John Wiley & Sons, Inc., 1966, ch. 5, p. 134.

Evans, Michael K. Macroeconomic Activity: Theory, Forecasting
and Control. New York: Harper & Row, 1969, p. 95 and p. 204.

Huang, David S. Regression and Econometric Methods. New York:
John Wiley & Sons, Inc., 1970, pp. 102, 185, 149-158, 163, 180.

Johnston, J. Econometric Methods. 2nd ed. New York:
McGraw-Hill Book Company, 1972, ch. 10.

Kane, Edward J. Economic Statistics and Econometrics. New York:
Harper & Row, 1968, pp. 277, 353, 364.

Kmenta, Jan. Elements of Econometrics. New York: Macmillan
Company, 1971, pp. 380, 473.

Salzman, Lawrence. Computerized Economic Analysis. New York:
McGraw-Hill Book Company, 1968, ch. 6.

159



